
Motion estimation

Moritz Loos 112385

Winter term 2014/15

1 Abstract

The goal of the project was to estimate the motion of a UAV using a stereo
camera system with help of the optical flow in the stereo images.

2 Introduction

The term optical flow describes the tracking of points from one image to
another. Generally there are two possible approaches: At first we try to
track every single pixel from frame to frame (called optical-field matching
in the following). In order to reduce the number of points to track we can
use an interval to determine points to track (e.g. tracking every tenth pixel
within every frame). The second approach would be tracking defined features
instead of every pixel in every frame(feature-based matching).

(a) optical-field-matching (b) feature-based-matching

Using optical-field matching the number of points is much higher than in
feature-based matching. Also the distribution of points is much better. On
the other side the number of outliers as well as the computational effort are
growing.

1

In order to make the framework portable and stable (for the future use
as a method for realtime flight-path detection) the basis is a feature-based
matching algorithm.

Unfortunately a simple mapping of optical flow vectors to the motion of
a camera is just possible when some special constraints are fulfilled [1].

1. The scene has to be static

2. The scene has to be parallel to the image plane of the camera

3. The scenes height has to be predefined.

That means the camera has to look down permanently (see figure 2).

Figure 2: camera constraint

If all these constraints are fulfilled it is possible to estimate the motion of
the camera just using the length and the direction of the optical flow vectors.

(a) rotation (b) translation

Figure 3: optical flow [1]

2

As it is not possible for us to hold this constraints we had to find other
approaches.

3 Settings

The system we are using is a calibrated stereo rig [2] and all values are
defined like described in figure 4. Where P represents the transformation
matrix of the current camera(PL is defined as the projection matrix from
the left camera in previous frame i-1 to the left camera in current frame i).
C describes the previous respectively current camera image.

Figure 4: camera setup

3

4 Visual odometry

In order to estimate the motion we need to find corresponding points in all
4 images. Our approach for performing visual odometry is represented in
figure 5 and is explained in the following.

Figure 5: image setup

We start to detect features in CL1 with the Shi-Tomasi Corner detector
that is implemented in OpenCV. The Shi-Tomasi approach is a faster and
more stable modification of Harris Corner detector [3].

Features (points of interest) are characterized by their gradient magni-
tudes and gradiant orientations in a local neighborhood. With analyzing the
eigenvalues of the structure tensor using a window pattern around a pixel is
it possible to decide if the point is a corner, an edge or neither of them.

4

Figure 6: Shi-Tomasi approach

In figure 6 are shown different window pattern with different gradient.
The first pattern is an edge because there is no change of gradient along the
edge direction. Second pattern is a corner because there are changes in both
directions. Last pattern has no change in any direction and is for this reason
just classified as a flat surface (no feature) [[4, 5]. The Shi-Tomasi Corner
detector is a really common approach, but an alternate could be the FAST
feature detector or SURF (Speeded-Up Robust Features).

After finding the features in CL1 the algorithm tries to find the corre-
sponding points in CR1 and CL2. Subsequently the points found in CR1 are
matched with the ones of CR2.
To refind points in different images we use the Lucas-Kanade algorithm that
is also part of the OpenCV library.

Beside SURF the Lucas-Kanade Algorithm is one of the most common
methods to find features in an image. One requirement for this method is,
that the intensity of a point in a specified window will not change from frame
to frame. That is the main reason why the algorithm works best on systems
with a high frame rate, so that the movement between the single frames is
very low [6].

In this project we used the pyramidical approach of this algorithm.
Therefore the reference image is downscaled to a certain number of pyramidal
layers (see figure 7) with different resolutions. Afterwards the Lucas-Kanade
Algorithm is called on each layer in ascending order (only in the range found
previously). Using this method the algorithm is way faster, more robust and
provides a better accuracy [7].

5

Figure 7: pyramedical approach of Lucas-Kanade

In order to prevent wrong associations between points, outliers have to
be deleted. Therefore OpenCV provides a method to find the fundamental
matrix using RANSAC [8]. Although the method is doing what it is supposed
to do, it finds too many good points (inliers) and declares them as outliers,
and vice versa. Because it is quiet difficult to retrace the wrong definition of
points we have to define inliers manually. One good approach therefore is
the constraint of having a rectified stereo camera system. The flow vectors
between CL1 and CR1 as well as CL2 to CR2 have to be horizontal on the
images (epipolar geometry). If that is not the case we delete this point in
all four frames. The following figure shows the inliers, represented as green
arrows as well as the outliers represented as red arrows.

Figure 8: inliers (green) and outliers (red)

6

5 Motion Estimation

Estimating motion between images is a hard task with many different ap-
proaches. Most of them use the projection matrix computed out of the
essential matrix. The matrices we need are computed separately (left and
right) between the current and the previous frame using detected features and
correspondence points. First we need to compute the fundamental matrices
for both sides (using the OpenCV method described before with RANSAC).
Next we have to calculate the essential matrices using the camera matrices
we get from the rectification using following formula [9].

E = K ′ · F ·K (1)

To obtain the perspective matrix we have to decompose the essential mat
using SVD [10]. Unfortunately the essential matrix can be decomposed to 4
different projection matrices and we have to find the right one. Therefore
the points are triangulated using all four possible projection matrices with
the goal to find the one where all points are in front of both cameras [11].

Figure 9: Decomposing of essential matrix [11]

One problem left is that the found projection matrix is up to scale, which
basically means that we just get the normalized direction vector (||T || = 1)
and the rotation of each camera. In order to get the correct scale factors we
have to triangulate a reference point cloud from the left to the right camera
called X. This point cloud is in the right scale because it is computed using
PLR which already contains metric values. Next we triangulate points from
the previous left image to the current left image resulting XL, the same

7

procedure is used to calculate XR. To estimate the scale factor for L and
R we just compare the point clouds with the reference X as the following
formulas show [12].

µ =
1

n
∗

n∑
i=1

‖X‖
‖XL‖

λ =
1

n
∗

n∑
i=1

‖X‖
‖XR‖

(2)

Improving the estimation can be done by skipping frames where the
motion estimation seems to fail and try to estimate the motion directly to
the next valid frameset. To decide if the frameset is valid or not we can
check against certain constraints. One of them is checking whether the
determinant of E is zero, the determinant of a valid rotation matrix should
be either positive or negative one [13]. To determine a good fundamental
matrix we need as much valid inliers as possible (a specific number depends
on various factors like image quality, size etc.). Also we defined a maximum
motion per frame as a maximum of one meter, because moving more than
one meter with a frame rate of either 30fps (binned) or 60fps is not realistic
and can be declared as wrong. If one of this constraints cannot be fulfilled we
skip the frameset and check the next one always remembering the last valid
frameset. The method is robust as long we do not skip more than 4 frames in
a row because of the increased distance between the taken pictures and the
resulting distance between corresponding points. A reason for that is that
the Lukas Kanade [6] algorithm does not work properly with high distances
between corresponding images. If there is a circular motion a correspondence
analysis is nearly impossible.

Figure 10: approach of skipping frames

As described above there exist a lot of methods in the field of visual
odometry. Beside the presented one we implemented two other approaches.
The Perspective-n-point method is another way to estimate motion using a
stereo-vision system. Therefore we have to find 3D-point to 2D-image-point
correspondences. These are easy to gather using triangulation. Fortunately
this method is included as RANSAC in OpenCV. The main idea is to use
the dependency between 2D and corresponding 3D points. 2D points are
here described as the multiplication of the projection matrix and the 3D

8

points as explained in the following formula [14].

xi = P ∗Xi xi := 2D points (3)

Xi := 3D points

Second approach is to compare the orientation of the point cloud triangu-
lated in frame i-1 to the point cloud triangulated in frame i (see figure [11]).
The whole method is explained in the paper ”Combining Stereo Vision and
Inertial Navigation System” [15] and is reimplemented by us.

Figure 11: approach of pointclout orientation

6 Results

Using the first approach we gathered some useful results. We used the stere-
osystem connected to a notebook and walked around the Digital-Bauhaus-Lab
in Weimar. Visually the estimated path matches to the one we walked. But
as we take a deeper look on the results we can see that the start and end
position is not matching though the test began and end in the exact same
location. To express the added error in numbers we can take a look at the
coordinates estimated. We started at [0, 0, 0] and stopped at [-0,23m, -5.46m,
-1.9m], which means we drifted by ± 6m. At this point we were not able to
gather any useful results using the other two approaches.

9

Figure 12: path around the DBL in Weimar

7 Issues

There are many different factors for good results when trying to estimate
the motion out of stereo camera images. Obviously the corresponding points
and their accuracy are the most important factor. The quality as well as
the distribution of points are two very important components, but also the
number of correct points. For example, if all points lie on a plane it is not
possible to compute the fundamental matrix. For a good triangulation it is
essential that the found features are not too far away (e.g at the horizon)
or too close together (too small translations can also affect the quality of
the triangulation). The reason for that is the small distance between the
points, so it is really hard to differ which feature belongs to another within
different frames and camera images. Whereby the same problem occurs with
too small translation. Another issue which can lead to problems is the size of
the baseline between the cameras. If it is too small the triangulation might
fail because of very low angles, if it is too big the number corresponding
points can be to less.

8 Future work

In order to make the algorithm more robust it is important that the error
from frame to frame does not grow more. Bundle adjustment could be a
useful approach to solve this problem. A comparison between these three
methods would be useful to evaluate the best method for a specific setup.
Another idea would be to combine the methods to get a system which is able
to cope with very different situations. The current code is basically written
to be used in a comfortable way, therefore an implementation with focus on

10

performance and stability would be important. Live test should be also done
in order to evaluate the current performance and robustness.

11

References

[1] Uni-Muenchen. Bewegungsanalyse: Optische flusse. http:

//cvpr.uni-muenster.de/teaching/ss09/computerVisionSS09/

script/CV08-Bewegungsanalyse.pdf.

[2] Hiller Malik. Fast depth map estimation from stereo camera systems.
not_published_yet.

[3] Wikipedia. Corner detection. https://en.wikipedia.org/wiki/

Corner_detection.

[4] Aishack. The shi-tomasi corner detector. http://www.aishack.in/

tutorials/the-shitomasi-corner-detector/.

[5] Marshall Tappen. Lecture 5: Feature detection. http://www.cs.ucf.

edu/~mtappen/cap5415/lecs/lec5.pdf.

[6] Johannes Brndle Christian Eppler, Stefan Mbius. Report - dig-
itale bildverarbeitung 2014 - bildfolgenverarbeitung. http://www.

informatikprojekt.de/uploads/dbv_report.pdf.

[7] Patrick Westfeld. Monokulare menschliche bewegungsanalyse in bild-
sequenzen. http://tu-dresden.de/die_tu_dresden/fakultaeten/

fakultaet_forst_geo_und_hydrowissenschaften/fachrichtung_

geowissenschaften/ipf/photogrammetrie/dateien/Westfeld2004.

pdf.

[8] OpenCV. Camera calibration and 3d reconstruction. http:

//docs.opencv.org/modules/calib3d/doc/camera_calibration_

and_3d_reconstruction.html.

[9] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edition,
2004.

[10] Carl Olsson. Lecture 6: Camera computation and the essential
matrix. http://www.maths.lth.se/matematiklth/personal/calle/
datorseende13/notes/forelas6.pdf.

[11] Volker Rodehorst. Lecture photogrammetric computer vi-
sion. http://www.uni-weimar.de/fileadmin/user/fak/

medien/professuren/Computer_Vision/Downloads/intern/WS/

Photogrammetric_Computer_Vision/lecture/09_pcv081214.pdf.

12

http://cvpr.uni-muenster.de/teaching/ss09/computerVisionSS09/script/CV08-Bewegungsanalyse.pdf
http://cvpr.uni-muenster.de/teaching/ss09/computerVisionSS09/script/CV08-Bewegungsanalyse.pdf
http://cvpr.uni-muenster.de/teaching/ss09/computerVisionSS09/script/CV08-Bewegungsanalyse.pdf
not_published_yet.
https://en.wikipedia.org/wiki/Corner_detection
https://en.wikipedia.org/wiki/Corner_detection
http://www.aishack.in/tutorials/the-shitomasi-corner-detector/
http://www.aishack.in/tutorials/the-shitomasi-corner-detector/
http://www.cs.ucf.edu/~mtappen/cap5415/lecs/lec5.pdf
http://www.cs.ucf.edu/~mtappen/cap5415/lecs/lec5.pdf
http://www.informatikprojekt.de/uploads/dbv_report.pdf
http://www.informatikprojekt.de/uploads/dbv_report.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_forst_geo_und_hydrowissenschaften/fachrichtung_geowissenschaften/ipf/photogrammetrie/dateien/Westfeld2004.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_forst_geo_und_hydrowissenschaften/fachrichtung_geowissenschaften/ipf/photogrammetrie/dateien/Westfeld2004.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_forst_geo_und_hydrowissenschaften/fachrichtung_geowissenschaften/ipf/photogrammetrie/dateien/Westfeld2004.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_forst_geo_und_hydrowissenschaften/fachrichtung_geowissenschaften/ipf/photogrammetrie/dateien/Westfeld2004.pdf
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://www.maths.lth.se/matematiklth/personal/calle/datorseende13/notes/forelas6.pdf
http://www.maths.lth.se/matematiklth/personal/calle/datorseende13/notes/forelas6.pdf
http://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Computer_Vision/Downloads/intern/WS/Photogrammetric_Computer_Vision/lecture/09_pcv081214.pdf
http://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Computer_Vision/Downloads/intern/WS/Photogrammetric_Computer_Vision/lecture/09_pcv081214.pdf
http://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Computer_Vision/Downloads/intern/WS/Photogrammetric_Computer_Vision/lecture/09_pcv081214.pdf

[12] Volker Rodehorst, Matthias Heinrichs, and Olaf Hellwich. Evaluation
of relative pose estimation methods for multi-camera setups. http:

//www.isprs.org/proceedings/XXXVII/congress/3b_pdf/25.pdf.

[13] Wikipedia. Essential matrix. http://en.wikipedia.org/wiki/

Essential_matrix#Properties_of_the_essential_matrix.

[14] Slobodan Ili. Tracking and detection in computer vision - camera models
and pose estimation. http://campar.in.tum.de/twiki/pub/Chair/

TeachingWs09MATDCV/camera_models_and_pose_estimation.pdf.

[15] LuisRodolfo Garca Carrillo, AlejandroEnrique Dzul Lpez, Rogelio
Lozano, and Claude Pgard. Combining stereo vision and inertial navi-
gation system for a quad-rotor uav. Journal of Intelligent & Robotic
Systems, 65(1-4):373–387, 2012.

13

http://www.isprs.org/proceedings/XXXVII/congress/3b_pdf/25.pdf
http://www.isprs.org/proceedings/XXXVII/congress/3b_pdf/25.pdf
http://en.wikipedia.org/wiki/Essential_matrix#Properties_of_the_essential_matrix
http://en.wikipedia.org/wiki/Essential_matrix#Properties_of_the_essential_matrix
http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09MATDCV/camera_models_and_pose_estimation.pdf
http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09MATDCV/camera_models_and_pose_estimation.pdf

	Abstract
	Introduction
	Settings
	Visual odometry
	Motion Estimation
	Results
	Issues
	Future work

